Exploring microalgal derivatives for antifouling application

Diogo Lopes1,2, Sandra Pereira1,3, Catarina Gonçalves1, Marco Preto3, Vitor Vasconcelos1,2 and Joana R. Almeida1

1CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
2Department of Biology, Faculty of Sciences, University of Porto, Portugal

Introduction

Marine biofouling can be described as the natural colonization of submerged structures and surfaces [1], by a wide range of micro- and macro-organisms. It can represent serious economical and ecological hardships, that need to be prevented.

Antifouling strategies in use have failed to offer environmentally friendly solutions to this problem. The discovery of new and non-toxic anti-fouling compounds is of the outmost importance, and natural products extracted from marine organisms have already proven to be promising antifouling alternatives [2].

Results

![Figure 1. Antibacterial activity of microalgal extracts against Halomonas aquamarina (A), Cobetia marina (B), Vibrio harveyi (C) and Roseobacter litoralis (D)](image)

Anti-bacterial hits:
- **H. aquamarina**
 - 16854 (E)
 - 19984 (B to H)
- **C. marina**
 - 15824 (E)
 - 16734 (D, E)
 - 191004 (F).
- **V. harveyi**
 - 14699 (C)
 - 16745 (C)
- **R. litoralis**
 - 16854 (A)
 - 191004 (A)
 - 16726 (A)

No extract inhibited Pseudoalteromonas atlantica growth.

![Figure 2. Anti-settlement activity of microalgal extracts against Mytilus galloprovincialis larvae.](image)

Anti-settlement hits:
- 15824 (B, E)
- 14699 (C)
- 16854 (B).

Conclusions

Preliminary results indicated that eight of the tested microalgal extracts showed antibacterial activity and 3 anti-macrofouling activity. Fraction E of extract 15824 and fraction C of extract 14699 inhibited both bacterial growth and larvae adhesion, being more promising candidates to further explore as antifouling agents. Future work on extracts chemical characterization and bioactivity confirmation will be performed.

References

Acknowledgments

This research was supported by national funds through FCT – Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020, under the project NASCEM. PTDC/BTA/BA3/422/2017 (POCI-01-0145-FEDER-031422) financed by FCT, COMPETE2020 and PORTUGAL 2020. This work is a result of the project ATLANTIDA (ref. NORTE-01-0145-FEDER-00045), supported by the Norte Portugal Regional.