Novel biomass-derived materials as efficient electrocatalysts for \(O_2 \) reactions

Inês S. Marques (up201608306@edu.fc.up.pt), Ruben Ramos (ruben.velarde@fc.up.pt), Andreia F. Peixoto (andreia.peixoto@fc.up.pt), Diana M. Fernandes (diana.fernandes@fc.up.pt)

REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto.

Introduction

The current environmental and energy crisis has stimulated the development of cleaner, sustainable, and efficient renewable energy storage and conversion technologies. Some of these technologies include fuel cells (FCs) and water splitting devices. Though mechanisms may differ, their core relies on electrochemical reactions: oxygen reduction (ORR) and water splitting into \(H_2 \) (HER) and \(O_2 \) (OER), where electrocatalysts play a key role.\[1-3\]. In ORR, conventional electrocatalysts are based on noble metals, such as Pt and Pd. However, these have poor stability under operating conditions, as well as high cost and scarcity, seriously limiting their large-scale commercial applications. As an alternative, biochar-based materials have been explored for ORR in energy storage and conversion devices, due to their low cost, abundance, and availability\[4\].

Herein, we report the preparation and application as ORR electrocatalysts of a new set of doped and functionalized biochar-based materials prepared using vineyard pruning wastes.

Electrocatalysts preparation

Experimental

Materials characterization

Oxygen reduction reaction (ORR)

Conclusion

Acknowledgements

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020 | UIDP/50006/2020. Acknowledgments are also due to the FCT – project Unicell POCI-01-0145-FEDER-016422 and project PTDC/BIE-BIO/30884/2017. DMF and AFP also thank FCT (Fundação para a Ciência e Tecnologia) for funding through program DL 57/2016 – Norma transitiária.

References

